BNMPy.simulation_evaluator¶
The simulation_evaluator module provides tools for evaluating PBN simulations against experimental data.
- class BNMPy.simulation_evaluator.SimulationEvaluator(pbn, experiments, config=None, nodes_to_optimize=None)[source]¶
Bases:
object
Evaluation engine for PBN parameter optimization Handles experiment simulation and SSE calculation
Methods
Get bounds for optimization parameters Now returns bounds only for nodes being optimized
objective_function
(cij_vector)Calculate objective function (MSE) for given parameters
- __init__(pbn, experiments, config=None, nodes_to_optimize=None)[source]¶
Initialize evaluator with PBN and experiments
SimulationEvaluator Class¶
- class BNMPy.simulation_evaluator.SimulationEvaluator(pbn, experiments, config=None, nodes_to_optimize=None)[source]¶
Bases:
object
Evaluation engine for PBN parameter optimization Handles experiment simulation and SSE calculation
Methods
Get bounds for optimization parameters Now returns bounds only for nodes being optimized
objective_function
(cij_vector)Calculate objective function (MSE) for given parameters
- __init__(pbn, experiments, config=None, nodes_to_optimize=None)[source]¶
Initialize evaluator with PBN and experiments
Overview¶
The SimulationEvaluator calculates the objective function for optimization by comparing PBN steady-state predictions with experimental measurements. It handles experimental conditions (stimuli/inhibitors) and computes mean squared error (MSE).
This module is automatically used by ParameterOptimizer.
See Also¶
BNMPy.parameter_optimizer - Main optimization interface
BNMPy.experiment_data - Experimental data handling
BNMPy.steady_state - Steady state calculation methods